Size : 5mg
Request more information
Please log in to use this feature.
JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.
The broad spectrum caspase inhibitor, QVD-OPh, provides a cost effective, non toxic, and highly specific means of apoptotic inhibition and provides new insight into the design of new inhibitors1.
Actinomycin D rapidly induced apoptosis and this was dramatically inhibited by the caspase inhibitor, Q-VD-OPh (quinolyl-valyl-O-methylaspartyl-[-2, 6-difluorophenoxy]-methyl ketone). Q-VD-OPh was significantly more effective in preventing apoptosis than the widely used inhibitors, ZVAD-fmk and Boc-D-fmk. Q-VD-OPh was also equally effective in preventing apoptosis mediated by the three major apoptotic pathways, caspase 9/3, caspase 8/10, and caspase 12. In addition to the increased effectiveness, Q-VD-OPh was not toxic to cells, even at high concentrations.
Q-VD-OPh was equally effective at inhibiting the three major apoptotic pathways, was functional in different cell types and species (human, mouse, and rat) and prevented terminal caspase activation, substrate cleavage, and DNA ladder formation associated with apoptosis. Q-VD-OPh can inhibit recombinant caspases 1, 3, 8, and 9 with IC50 values ranging from 25 to 400 nM2. The effectiveness of Q-VD-OPh as an apoptotic inhibitor is evidenced by the complete suppression of an apoptotic inducer capable of inducing substantial cell death in less than 4 hours.
Q-VD-OPh protected against the substantial apoptosis induced by actinomycin D. In addition, Q-VD-OPh alone exhibited little or no toxicity, even at extremely high concentrations.
The effective concentration of Q-VD-OPh may provide a unique reagent when trying to revive hard to propagate cell lines from liquid nitrogen. The addition of this inhibitor to thawed cells would give the cells adequate time to recover, even in the presence of standard DMSO concentrations (10%), from the stress of thawing and begin to proliferate in the absence of toxicity. Q-VD-OPh is stable in solution for several months and is effective in culture for at least 2.5 days. This would provide an ideal time frame for cell recovery; whereas, the subsequent decrease in effectiveness over time would be fortuitous in that the cells would return to standard culture conditions with minimal manipulation1.
References: 1. T. M. Caserta, A. N. Smith, A. D. Gultice, M. A. Reedy and T. L. Brown, Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties, Apoptosis 2003; 8: 345–3522. Yin XM. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 2000; 10: 161–167
Cell lines
JURL-MK1 and HL60 cell
Preparation method
The solubility of this compound in DMSO is >10 mM. General tips for obtaining a higher concentration: Please warm the tube at 37 °C for 10 minutes and/or shake it in the ultrasonic bath for a while.Stock solution can be stored below -20°C for several months.
Reaction Conditions
No specific suggestion
Applications
Q-VD-OPh largely inhibited caspase-3 and 7 activity at 0.05 mM. Caspase-8 was also inhibited by Q-VD-OPh at very low concentration. Q-VD-OPh prevented the cleavage of PARP-1 at 10 mM . Q-VD-OPh inhibited DNA fragmentation and disruption of the cell membrane functionality at 2 mM, and the drug-induced loss of cellular adhesivity to fibronectin need 10 mM Q-VD-OPh.
Animal models
TgCRND8 mice in 3 months-old
Dosage form
Intraperitoneally Injected with 10 mg/kg QVD-OPh at 3 times a week for 3 months
Q-VD-OPh inhibited caspase-7 activation and limited the pathological changes of tau and caspase cleavage in chronic treatment of Alzheimer disease.
Other notes
Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal.
References:
1. Kuželová K1, Grebeňová D, Brodská B.Dose-dependent effects of the caspase inhibitor Q-VD-OPh on different apoptosis-related processes. J Cell Biochem. 2011 Nov;112(11):3334-42.
2. Rohn TT, Kokoulina P, Eaton CR et al. Caspase activation in transgenic mice with Alzheimer-like pathology: results from a pilot study utilizing the caspase inhibitor, Q-VD-OPh. Int J Clin Exp Med. 2009 Nov 5;2(4):300-8.