

Apoptosis Antibodies

Large images to the right is a ribbon and mesh 3D model of the key apoptosis protein Bak

Distributed by: CliniSciences Group

Abcepta: A Leader in Apoptosis Antibodies

Abcepta has a vast collection of apoptosis antibodies. Abgent's apopto-sis antibody product line focuses on the BH3 domain of the Bcl-2 protein. Our antibodies target a range of pro-apoptotic members of the BH3 domain such as Bax, Bak, Bid, and Bim, among many others. In addition to the Bcl-2 proteins, our apoptosis line includes products against novel targets such as ABL, BRAF, p53, and TAO.

Apoptosis (programmed cell death), is a tightly regulated process for dismantling and termination of unneeded, aging, mutated, or infected cells. It is characterized by cell shrinkage, membrane blebbing, phago-cytotic engulfment of the fragmented cell, DNA fragmentation, and mitochondrial release of cytochrome C. Dysregulation of cellular death/survival signals is implicated in a broad range of human disease. Deactivation of apoptosis removes the brakes from cellular growth, leading to the unchecked proliferation that a hallmark of cancer, autoim-mune disease, and viral infections.

Apoptosis Overview

۲

Apoptosis Protein Associations

Abcepta and ApoptosisInside Cover	
Key Apoptosis Antibodies1	
Apoptosis Antibodies2-5	
Apoptosis Co-Expression Network6	
Apoptosis Co-Expression Network7	
Review article: BH3 Domain in Apoptosis8-9	

()

ApopB-pp8-9s.indd 3

Distributed by: **CliniSciences** Group

Apoptosis Antibodies – Featured Products

Abcepta has a vast portfolio of apoptosis antibody products. Our coverage includes an extensive collection of BH3 domain antibodies.

۲

Distributed by: CliniSciences Group

Apoptosis Antibodies

CATALOG #	TARGET	VALIDATION	SPECIFICITY
AP1300a	A1 BH3 domain	WB, IHC, E	Н
AP7694a	ABL1	WB, E	Н
AP7694b	ABL1	WB, IHC, E	Н
AP7102a	ACVR1C	WB, IHC, E	Н
AP7028c	AKT1	WB, E	Н
AP7141a	AKT1	WB, IHC, E	Н
AP6401b	Alpha-synuclein	WB, IHC, E	Н
AP7110d	ALS2CR2	WB, E	Н
AP7201a	AMPK alpha	WB, E	H. M
AP2509a	ANDR Sumovlation Site	IHC. E	H
AP1262a	AOS1	WB. IHC. E	H. M
AP2511a	AOS1	WB IHC F	НМ
AP1151a	APG12L	IF. E	Н
AP1816b	APG12L	IHC F	н
AP1816a	APG12L	WB IHC F	н
AP1812a		WB, IHC, E	H M B* D* R* 7*
AM1813a	APG7	WB, INC, L	н, м, в, г, к, г
AP63062		WB E	нм
AD13140	Bad	WB E	H
AP 13140	Bad		
AP 13140	Dau Rad PH2	INC E	
AP1322a	Dau BH3		
AP1301a	Bak BH3	WB, IHC, E	Н
AP1302a	Bax BH3	WB, IHC, E	Н, М
AP1303a	Bcl-2 BH3	WB, IP, F, E, FC†	Н
AP7877c	BCL2L10	WB, E	Н
AP7878c	BCL2L13	WB, E	Н
AP1304a	Bcl-G BH3	WB, IHC, E	H, M
AP1305a	Bcl-w BH3	WB, IHC, E	H, M
AP1306a	Bcl-x BH3	IHC, E	Н
AP1818d	BECN1	IHC, E	Н
AP1818f	BECN1	WB, E	Н
AP1818b	BECN1 (APG6)	WB, IHC, E	Н, М
AP1818a	BECN1 (APG6)	WB, IHC, E	Н, М
AP1307a	Bid BH3	WB, IHC, E	Н
AP1319a	Bik BH3	WB, IHC, E	H, M
AP1308a	Bim BH3	WB, IHC, E	Н
AP6124a	BIRC3	IHC, E	Н
AP6125a	BIRC4	WB, IHC, E	H, M
AP6127a	BIRC6	IHC, E	Н
AP6128a	BIRC7	WB, IHC, E	Н
AP1309a	Bmf BH3	WB, IHC, E	Н
AP1320a	BNIP3L BH3	IHC F	НМ
AP1310a	Bok BH3	WB IHC F	н м
AP7810c	BRAF	WB IHC F	H
AP79104	BRAF	WB HC E	н
AP76000	BTK		Ц
AT14000			
AT 1400a		WD, IFIC, E	
AT 1402a		WB, E	
AT1403a	CASP14	WB, IF, E	н
AP75630	CASP3	WB, IHC, E	H
AP1313D	CASPO	WB, E	F1, IVI
AP/9/4a	CASP9	WB, E	н
AI 1404a	CASP9	WB, IF, E	Н
AP2514a	CBX4	WB, IHC, E	Н, М
AP6294a	CD14	WB, IHC, E	Н
AP7513b	CDC2L1	WB, IHC, E	Н, На
AP7517b	CDK1	WB, E	Н
AP7521b	CDK5	WB, E	Н, М
AP7527b	CDKN1A	WB, IHC, E	Н
AP1497a	CDC2	WB, E	Н

.

۲

Apoptosis Antibodies

36

28

17 (-) (+)

transiently transfected

Distributed by: CliniSciences Group

۲

Distributed by: CliniSciences Group

Apoptosis Antibodies

CATALOG #	TARGET	VALIDATION	SPECIFICITY
AT2991a	NDRG1	WB, IHC, E	Н
AP8077a	NEK6	WB, E	Н, М
AP1980b	NFKB1	WB, E	Н
AP7981a	NFKBIA	IHC, E	Н
AP1321a	NIP3 BH3	WB, IF, IHC, E	H, M
AP8080a	NME1	WB, IHC, E	Н
AP7156a	NME3	WB, IHC, E	Н
AP8082c	NME5	WB, IHC, E	H, M
AP8083a	NME6	WB, E	Н
AP8157b	NPK	WB, E	Н, М
AP8157a	NPK	WB, IHC, E	Н
AP6223a	NRG2	IHC, E	Н
AP7158a	NUAK2	WB, E	Н
AP2510a	NYREN18	WB, IHC, E	H, M
AP7926d	PAK1	WB, IHC, E	H
AP1299a	Pan SUMO	WB, IHC, E	Н
AT3246a	PDCD6	WB, IF, E	Н
AP2710c	PHB	WB. E	Н
AP2710a	PHB1	WB. E	Н
AP7799a	PHLPP2	IHC. E	Н
AP1242a	PIAS1	WB IHC F	н
AP1244a	PIAS3	WB, IHC, E	н
AP1280b	PIASny	WB, HIO, E	н
AP1248a	PIASy1	WB, L	н
AP1247a	PIASy1/2	WB, IHC, E	н
AP12402		WB, INC, E	
AP1243a			П
AP1251a			п
AP12528	PIASZI		п
AF0020a		WB, IHC, E	
AP7932a		WB, IHC, E	п
AP7015a	PKC aipha	WB, IHC, E	н
AP7019a	PKC epsilon	WB, IHC, E	п
AP70268	PRC Zela	WB, IHC, E	н
AP2504a			п
AP8459a	PPMIF	WB, IHC, E	н
AP7581a	PPP1R13B	IHC, E	н
AP8462a	PPP2CA/B	WB, IHC, E	н
AP7260a	PRKAA1	WB, IHC, E	Н
AP7261a	PRKCA	WB, E	H, M
AP8151a	PRKR	WB, IHC, E	H, M
AP7744a	PRKRA	WB, E	Н
AP1001b	PRMT1	WB, E	Н
AP1007d	PRMT5	WB, IHC, E	Н
AP6231a	PSEN1	WB, IHC, E	H, M
AP6304a	PSN1	WB, E	Н
AP6304b	PSN1/2	WB, E	Н
AP6305b	PSN2	WB, E	Н
AP6304c	PSN2/1	WB, E	H, M
AP8436a	PTEN	WB, IHC, E	Н
AP1317a	Puma BH3 domain	WB, IHC, E	H, M
AP1318a	Rad9 BH3	WB, IHC, E	H, M
AP7816a	RAF1	WB, IHC, E	Н
AP7816d	RAF1	WB, IHC, E	H
AP2503a	Ran-GTPase Sumoylaion Site	WB, E	Н
AP7817b	RIPK1	WB, IHC, E	Н
AP7818b	RIPK2	WB, IHC, E	H, M
AP7819b	RIPK3	WB, IHC, E	Н, М
AP1230a	SENP1	WB, IHC, E	Н
AP1233a	SENP2	WB, IHC, E	Н
AP1235a	SENP3	WB, IHC, E	Н

.

Apoptosis Antibodies

Immunoperoxidase of monoclonal antibody to NDRG1 on formalin-fixed paraffin-embedded human endometrium

36 28

Western blot analysis of NUAK2 antibody.

293 cell lysates either nontransfected or transiently transfected.

Formalin-fixed and

paraffin-embedded human lung carcinoma tissue reacted with PKC zeta antibody.

250 150 of PIAS3 polyclonal 100 75 100 75 50 Western blot analysis antibody in bacterial 50 of PIASy1 antibody in extract lysate. 37 HL-60 cell lysate. 37 25 20 15 25 20 15 Western blot analysis 130 95 72 of PIK3R2 antibody. 293 cell lysates either nontransfected or transiently transfected. 55 36 28

Western blot analysis

250 150

55-4

36

28

lysates either nontransfected or transiently transfected.

130 95 72 55-4 Western blot analysis of SENP3 antibody in Hela and Y79 cell line lysates. 36 28

۲

Western blot analysis of RIPK2 95 72 55 -◄ antibody in Ramos cell line lysates. 36 28 17

55

Distributed by: **CliniSciences** Group

Formalin-fixed and paraffin-embedded human breast carcinoma reacted with VEGF antibody.

Distributed by: CliniSciences Group

Apoptosis Antibodies

۲

CATALOC #	TADOET		SDECIFICITY
AP12392	SENDE	WB HC E	н
AP12/12	SENP7	WB, INC, L	нм
AP1250a	SEND8	WB, E	н м
AP7056a	SCK	WB, E	H M
AP7951a	SIK	WB HC E	H
AP2053b	SLUG	WB F	н
AP7238a	SPHK2	WB HC E	н
AP2183b	SOSTM1 (p62)	WB, IF IHC F	Н
AP7258a	STK4	WB F	Н
AM1200a	SUMO1	WB F	Н
AP1221a	SUMO1	WB. IHC. E	Н
AP1222a	SUMO1	WB. IHC. E. IF†	Н
AP1282a	SUMO2	WB. IHC. E	Н
AP1223e	SUMO2/3	WB, IHC, E	Н
AP1224a	SUMO2/3	WB, IHC, E	Н, М
AM1201a	SUMO3	WB, E	H
AP1225a	SUMO3	WB, IHC, E	Н
AP1264a	SUMO4	WB, IHC, E	Н
AP1281a	SUV39H2	WB, IHC, E	Н
AP7969c	TAO1	IHC, E	Н
AP7682a	TAO2	WB, IHC, E	Н
AP7954a	TAOK2	IHC, E	Н
AP2047a	TDGF1	WB, IHC, E	Н
AP7821c	TESK2	WB, IHC, E	Н, М
AP7826c	TGM2	WB, E	Н
AT4231a	THAP1	WB, E	Н
AP2050a	THY1	WB, IHC, E	Н
AP1502a	TLR2	IHC, E	Н
AP7825b	TRAF2	WB, E	Н
AP1337a	TrX	WB, E	Н
AP1338a	Trx2	WB, E	Н
AP1336b	TrxL	WB, IHC, E	Н
AM7679b	TYRO3	WB, IHC, E	Н
AM1261a	UBC9	WB, E	Н
AP2106a	UBCE7IP1	WB, E	Н, М
AP2106b	UBCE7IP1	WB, IHC, E	Н, М
AP2111a	UBE4B	WB, IHC, E	Н, М
AP6290a	VEGF1	WB, IHC, E	Н
AP7823b	ZAK	IHC, E	Н

Additional Apoptosis Products

۲

CATALOG #	TARGET	SPECIFICITY
SP1001b	A1/Bfl-1 BH3 Domain Mutant Peptide	Н
SP1001a	A1/Bfl-1 BH3 Domain Peptide	Н
SP1014b	BNIP3L BH3 Domain Mutant Peptide	Н
SP1014a	BNIP3L BH3 Domain Peptide	Н
SP1002b	Bad BH3 Domain Mutant Peptide	Н
SP1002a	Bad BH3 Domain Peptide	Н
SP1003b	Bak BH3 Domain Mutant Peptide	Н
SP1003a	Bak BH3 Domain Peptide	Н
SP1004b	Bax BH3 Domain Mutant Peptide	Н
SP1004c	Bax BH3 Domain Mutant Peptide 2	Н
SP1004a	Bax BH3 Domain Peptide	Н
SP1005b	Bcl-2 BH3 Domain Mutant Peptide	Н
SP1005c	Bcl-2 BH3 Domain Mutant Peptide 2	Н
SP1005a	Bcl-2 BH3 Domain Peptide	Н
SP1006b	Bcl-G BH3 Domain Mutant Peptide	Н
SP1006a	Bcl-G BH3 Domain Peptide	Н
SP1007b	Bcl-rambo BH3 Domain Mutant Peptide	Н
SP1007a	Bcl-rambo BH3 Domain Peptide	Н

Apoptosis Co-Expression Network

۲

This Bad co-expression network is based on GeneChip data NCBI GEO.

Abgent's Gene Network Discovery Team has developed a powerful technology to perform sophisticated nearest-neighbor analysis of protein associations via large-scale mining of GeneChip data. The result is a concise visual representation of the collective findings of scores of independent scientists. Presented above is the human gene network centered on Bad, an important apoptosis protein. Contact your local distributor today for a free custom network production centered on your gene of interest!

۲

Distributed by: CliniSciences Group

Apoptosis Co-Expression Network

This Bcl2 co-expression network is based on GeneChip data NCBI GEO.

Abgent's Gene Network Discovery Team has developed a powerful technology to perform sophisticated nearest-neighbor analysis of protein associations via large-scale mining of GeneChip data. The result is a concise visual representation of the collective findings of scores of independent scientists. Presented above is the human gene network centered on Bcl2, an important apoptosis protein. Contact Abcepta today for a free custom network production centered on your gene of interest!

۲

Distributed by: CliniSciences Group

BH3 Domains in Apoptosis

 (\mathbf{A})

Bcl-2 protein contacts regulate key aspects of apoptosis [1-3]. Corruption of apoptotic instructions is associated with a large subset of human diseases, ranging from cancer and cardiovascular to neurodegenerative diseases, and many others [4,5]. Understanding regulation of apoptosis is critical to pharmaceutical intervention. The BH3 domain of Bcl-2 family members is key to Bcl-2 regulatory function.

Bcl-2 family proteins play pivotal roles in apoptosis

Founding family member Bcl-2 is overexpressed in 50% of all cancers, including ~70% of breast cancers, ~30%-60% of prostate cancers, ~90% of colorectal cancers, ~60% of gastric cancers, ~100% of small-cell lung carcinomas, ~20% of non-small-cell lung cancers, ~30% of neuroblastomas, and ~80% of B cell lymphomas [7,8]. Bcl-2's ability to impair apoptosis induction by traditional cytotoxic (chemotherapeutic) drugs is well-established [6]. Tumor cells gain resistance to therapy by reducing expression of pro-apoptotic Bcl-2 protein family members like Bax. Bcl-2 antisense olignonucleotides inhibit non-Hodgkins lymphoma in humans and enhance tumor cell susceptibility to chemotherapeutics [9].

Pro-apoptotic members, including Bax, Bak, Bid, and Bim, trigger release of death-inducing proteins from mitochondria while anti-apoptotic members such as Bcl-2 and Bcl-xL inhibit release. These death-inducing proteins work through pathways including caspase activation and DNA fragmentation [8,10]. Homo- and heterodimerization events are critical to function [11].

BH3 domain interaction is the key regulatory element in Bcl-2 family member proteins

There are four homologous motifs within the Bcl-2 family: BH1, BH2, BH3, and BH4. The BH3 domain is critical for Bcl-2 family heterodimerization and death-promoting activity. Bid, Bcl-2, and Bcl-xL cleavage exposes the BH3 domain and recruits these molecules to mediate apoptosis. Some Bcl-2 family members, including Bik, Bid, and Hrk, contain only the BH3 domain [12-14]. Deletion of BH3 domains from this subfamily abolishes both ability to promote cell death and heterodimerization with anti-apoptotic proteins. Overex-pression of Bak BH3 domain fragments induces mammalian cell death [15].

The Bcl-xL structure reveals a receptor-like hydrophobic groove formed by the BH1, BH2, and BH3 domains, binding epitopes located on dimerizing partner proteins. The BH3 domain inserts into the surface pocket on Bcl-xL, similar to a peptide ligand. Death agonists such as Bax, Bak and Bad, insert via BH3 domains into the groove of Bcl-2 or Bcl-xL and promote apoptosis. A Bcl-xL:Bak complex structure confirms the critical nature of BH3 contacts [16].

BH3 domain-based interactions delineate key apoptotic pathways

Functional and structural evidence suggests that BH3 domains are pivotal to Bcl-2 regulated apoptosis. BH3 peptides that bind the Bcl-2 pocket block functional protein-protein interactions, implying that secondary and tertiary domain structure is retained in peptidic versions.

ApopB-pp8-9s.indd 1

BH3 of Bak, Bax, or Bid induce apoptosis by causing rapid activation of caspases, whereas a Bak BH3 mutant peptide containing an Ala substitution at Leu-78, which is critical for Bcl-xL binding, shows no effect [16]. Bak, Bax, and Bad BH3 peptides block heterodimerization of Bcl-xL with cell death agonists in a dosedependent manner in an in vitro assay [17,18]. Bad BH3 peptides are more potent than other Bcl-2 family BH3 domains in blocking protein-protein interactions of Bcl-xL [17]. Bad and Bax BH3 peptides block Bcl-2: Bak association and induce apoptosis in prostate carcinoma cells, which is blocked by caspase inhibitors [19].

The structure reveals a hydrophobic surface pocket on Bcl-xL formed by the BH1-3 domains bound by the Bak BH3 domain peptide in helical conformation.

Inhibitors of Bcl-2 protein-protein interactions may provide useful leads for drug design. Nonpeptidic small molecules that target BH3 binding are valuable as probes for mapping Bcl-2 family protein binding pockets and as leads for new therapeutic agents. Abnormal Bcl-2 gene expression is found in ~50% of all cancers [17,18]. Bcl-2 protein levels correlate with resistance to chemotherapeutic and radiation therapies [6,10]. Bcl-2 protein inhibitors may be more selective than conventional cytotoxic chemotherapies, since Bcl-2 is low in most normal cell types. Antisense oligonucleotides targeted against the Bcl-2 gene specifically inhibit non-Hodgkins lymphoma in humans, validating Bcl-2 as a therapeutic target [9]. Pro-apoptotic proteins such as Bax and Bad are attractive targets for diseases where the goal is to prevent excessive cell death, such as cardiovascular and neurodegenerative diseases.

High affinity of a Bak BH3 peptide for BcI-xL was explained by the NMR structure of a BcI-xL:Bak BH3 peptide complex (see figure, [16]). A crystal structure of BcI-xL in complex with a peptide derived from the BH3 domain of Bak has been solved [16,20-21].

References

1. Z.N. Oltvai, et al. Cell, 1993. 74(4): p.609-619.

2. T.W. Sedlak, et al. Proc. Natl. Acad. Sci., 1995. 92: p. 7834-7838. 3. H. Zha, C., et al. J. Biol. Chem., 1996. 271: p.7440-7444. 4. C.B. Thompson. Science, 1995. 267: p. 1456-62. 5. H. Steller. Science, 1995. 267(5203): p. 1445-1449. 6. Z. Huang. Oncogene, 2000. 19: p. 6627-6631. 7. J.C. Reed, et al. J. Cell. Biochem., 1996. 60: p. 23-32. 8. J.C. Reed. J. Cell. Biol., 1994. 124: p. 1-6. 9. A. Webb, et al. Lancet, 1997. 349(9059): p. 1137-1141. 10. J.M. Adams and S. Cory. Science, 1998. 281: p. 1322-6. 11. J.C. Reed. Nature, 1997. 387: p. 773-776. 12. J.M. Boyd, et al. Oncogene, 1995. 11: p. 1921-1928. 13. N. Inohara, et al. EMBO J. 16: p. 1686-1694. 14. K. Wang, et al. EMBO J, 1995. 14: p. 5589-5596. 16. M. Sattler, et al. Science, 1997. 275: p. 983-986. 17. S. Ottilie, et al. J. Biol. Chem., 1997. 272: p. 30866-30872. 18. J.L. Diaz, et al. J. Biol. Chem., 1997. 272: p. 11350-11355. 19. B.A. Morgan, et al., 91st Annual Meeting of the American Association for Cancer Research, 2000. 42: p. 4693. 20. Z. Huang. Chemistry and Biology, 2002. 9: p. 1059-1072. 21. D. Liu and Z. Huang. Apoptosis, 2001. 6: p. 453-462. 22. J. Wang, et al. Proc. Natl. Acad. Sci. USA, 2000. 97: p. 7124-7129. 23. A. Degterev, et al. Nat. Cell. Biol., 2001. 3: p. 173-182. 24. Real PJ, et al. Cancer Res., 2004. 4(21): p. 7947-53. 25. Chan SL, et al. J Biol Chem., 2003. 278(23): p. 20453-6. 26. Enyedy IJ, et al. J Med Chem., 2001. 44(25): p. 4313-24.

8/18/09 12:57:<mark>24 PM</mark>

CliniSciences Group

Austria

Company: CliniSciences GmbH Address: Sternwartestrasse 76, A-1180 Wien - Austria Telephone: +43 720 115 580 Fax: +43 720 115 577 Email: <u>oesterreich@clinisciences.com</u> Web: <u>https://www.clinisciences.com</u>

Finland

Company: CliniSciences ApS Address: Oesterbrogade 226, st. 1, Copenhagen, 2100 - Denmark Telephone: +45 89 888 349 Fax: +45 89 884 064 Email: <u>suomi@clinisciences.com</u>

Web: https://www.clinisciences.com

Iceland

Company: CliniSciences ApS Address: Oesterbrogade 226, st. 1, Copenhagen, 2100 - Denmark Telephone: +45 89 888 349 Fax: +45 89 884 064 Email: island@clinisciences.com Web: https://www.clinisciences.com

Netherlands

Company: CliniSciences B.V. Address: Kraijenhoffstraat 137A, 1018RG Amsterdam, - Netherlands Telephone: +31 85 2082 351 Fax: +31 85 2082 353 Email: <u>nederland@clinisciences.com</u> Web: <u>https://www.clinisciences.com</u>

Portugal

Company: Quimigen Unipessoal LDA Address: Rua Almada Negreiros, Lote 5, Loja 14, 2615-275 Alverca Do Ribatejo - Portugal Telephone: +351 30 8808 050 Fax: +351 30 8808 052 Email:<u>info@guimigen.com</u> Web: <u>https://www.guimigen.pt</u>

Switzerland

Company: CliniSciences AG Address: Fracht Ost Flughafen Kloten CH-8058 Zürich - Switzerland Telephone: +41 (044) 805 76 81 Fax: +41 (044) 805 76 75 Email: switzerland@clinisciences.com Web: https://www.clinisciences.com

Belgium

Company: CliniSciences S.R.L Address: Avenue Stalingrad 52, 1000 Brussels - Belgium Telephone: +32 2 31 50 800 Fax: +32 2 31 50 801 Email: <u>belgium@clinisciences.com</u> Web: <u>https://www.clinisciences.com</u>

France

Company: CliniSciences S.A.S Address: 74 Rue des Suisses, 92000 Nanterre- France Telephone: +33 9 77 40 09 09 Fax: +33 9 77 40 10 11 Email: info@clinisciences.com Web: https://www.clinisciences.com

Ireland

Company: CliniSciences Limited Address: Ground Floor, 71 lower Baggot street Dublin D02 P593 - Ireland Telephone: +353 1 6971 146 Fax: +353 1 6971 147 Email:<u>ireland@clinisciences.com</u> Web: <u>https://www.clinisciences.com</u>

Norway

Company: CliniSciences AS Address: c/o MerVerdi Munkerudtunet 10 1164 Oslo - Norway Telephone: +47 21 988 882 Email: norge@clinisciences.com Web: https://www.clinisciences.com

Spain

Company: CliniSciences Lab Solutions Address: C/ Hermanos del Moral 13 (Bajo E), 28019, Madrid - Spain Telephone: +34 916 750 700 Fax: +34 91 269 40 74 Email: <u>espana@clinisciences.com</u> Web: <u>https://www.clinisciences.com</u>

UK

Company: CliniSciences Limited Address: 11 Progress Business center, Whittle Parkway, SL1 6DQ Slough- United Kingdom Telephone: +44 (0)1753 866 511 or +44 (0) 330 684 0982 Fax: +44 (0)1753 208 899 Email: <u>uk@clinisciences.com</u> IWeb: <u>https://www.clinisciences.com</u>

Denmark

Company: CliniSciences ApS Address: Oesterbrogade 226, st. 1, Copenhagen, 2100 - Denmark Telephone: +45 89 888 349 Fax: +45 89 884 064 Email: <u>danmark@clinisciences.com</u> Web: <u>https://www.clinisciences.com</u>

Germany

Company: Biotrend Chemikalien GmbH Address: Wilhelm-Mauser-Str. 41-43, 50827 Köln - Germany Telephone: +49 221 9498 320 Fax: +49 221 9498 325 Email: info@biotrend.com Web: https://www.biotrend.com

Italy

 \bigcirc

Company: CliniSciences S.r.l Address: Via Maremmana inferiore 378 Roma 00012 Guidonia Montecelio - Italy Telephone: +39 06 94 80 56 71 Fax: +39 06 94 80 00 21 Email: <u>italia@clinisciences.com</u> Web: <u>https://www.clinisciences.com</u>

Poland

Company: CliniSciences sp.Z.o.o. Address: ul. Rotmistrza Witolda Pileckiego 67 lok. 200 - 02-781 Warszawa -Poland Telephone: +48 22 307 0535 Fax: +48 22 307 0532 Email: polska@clinisciences.com Web: https://www.clinisciences.com

Sweden

Company: CliniSciences ApS Address: Oesterbrogade 226, st. 1, Copenhagen, 2100 - Denmark Telephone: +45 89 888 349 Fax: +45 89 884 064 Email: <u>sverige@clinisciences.com</u> Web: <u>https://www.clinisciences.com</u>

USA

Company: Biotrend Chemicals LLC Address: c/o Carr Riggs Ingram, 500 Grand Boulevard, Suite 210 Miramar Beach, FL 32550- USA Telephone: +1 850 650 7790 Fax: +1 850 650 4383 Email: info@biotrend-usa.com

Web: https://www.biotrend-usa.com

+

Distributed by: CliniSciences Group

-

+